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Abstract. The spontaneous emission of an excited atom is analyzed by quantum stochastic trajectory
approach without both rotating-wave approximation and Markovian approximation. The atom finite size
effect is also taken into account. We show by an example that the correction due to the counter-rotating
wave term is rather small, even for the largest atomic number of real nuclei.

PACS. 42.50.Ct Quantum description of interaction of light and matter; related experiments –
42.50.Lc Quantum fluctuations, quantum noise, and quantum jumps

1 Introduction

The spontaneous emission of an excited atom is an old
question of quantum theory. The first important progress
in this respect is the proposition and evaluation of the
Einstein A coefficient γA, which gives the spontaneous
emission rate. It is well known that γA is proportional
to d2, where d denotes the electric-dipole transition mo-
ment. The next important progress is the formulation of
Weisskopf-Wigner theory. It takes γA as the percentage
decay rate of the upper-level population N2 during the
whole emission process, leading to an exponential decay
of N2 and consequently a Lorentzian line profile in the
atomic spectrum. This treatment actually contains two
approximations. One is the neglect of the finite size effect
on the electric-dipole transition along with the omission of
the contribution from all possible higher multipole tran-
sitions, caused by the replacement of the plane wave fac-
tor eik·x by 1 in the transition matrix element evaluation.
Another is the so-called Markovian approximation on the
reduced equations of the atomic variables derived by elim-
inating the photon variables. They are differential-integral
equations with correlation functions to denote the memory
effect. The Markovian approximation neglects this mem-
ory effect and hence changes them to simple differential
equations.

The Weisskopf-Wigner theory applies well for the emis-
sion of outer-shell electron or inner-shell electron of light
nuclei. But in the case of inner-shell electron emission of
heavy nuclei, it may lead to obvious deviation, since (1) ω0

is proportional to Z2
eff (where Zeffe is the charge of the

atomic core felt by the emitting electron), and the radius a
of the electron cloud is proportional to 1/Zeff, leading to
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a linear increase of k0a = ω0a/c with Zeff . This makes
the pointlike electric-dipole approximation (neglecting the
factor eik·x in the integral) poorer for large Zeff . (2) Dur-
ing the emission process, the frequency of the emitted
photon does not need to be ω0 (such photon is the so-
called virtual photon) and the finite size correction will
become larger for large ω. As to the Markov approxi-
mation, in the usual estimation, the characteristic cor-
relation time is of order 2π/ω0, while the decay time of
the atomic variable is of order 1/γA. Hence, the valid-
ity of the Markovian approximation requires 2π/ω0 much
smaller than 1/γA, namely 2πγA/ω0 � 1. It can be shown
that γA/ω0 increases as Z2

eff , hence large Zeff disadvan-
tages the Markovian approximation.

Later on, some people considered the correction to the
Weisskopf-Wigner theory [1–4]. But, as far as we know,
all of them applied the Laplace transform to solve the re-
sultant differential-integral equation, and various kinds of
approximations were used in the inverse transform. Some
papers even take the radiating atom as a pointlike electric
dipole, so that the corresponding correlation spectrum di-
verges linearly with ω, and in the subsequent treatment an
artificial cutoff of frequency is needed. Besides, majority
of them only considers the case of Z = 1.

In a preceding paper [5], two of us with other cowork-
ers restudied this problem by a totally different approach.
The stochastic quantum trajectory formulation [6] is ap-
plied for this investigation, and the non-Markovian cor-
rection to the decay of upper-level population is taken
into account by introduction of additional fictitious oscil-
lators [7,8]. However, the counter-rotating wave interac-
tion is still not taken into account. Now we will release
this limitation to include the counter-rotating wave term
in the interaction, since its effect also becomes larger for
stronger coupling [9]. In this case there are two correlation
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spectra, hence more fictitious oscillators are needed to sim-
ulate them. Moreover, in the case of the rotating-wave ap-
proximation, the total quanta of the fictitious oscillators
is either one or zero, while the counter-rotating wave in-
teraction puts no limitation on the quanta numbers. Both
of these will increase the amount of numerical calculation.

In Section 2 the relevant differential-integral equation
for the atom operators is given, with the two correlation
spectra explicitly derived. The same hydrogen-like exam-
ple as that of reference [5] is numerically studied for com-
parison. In Section 3 the quantum stochastic trajectory
analysis [6] of the enlarged system [7,8] is carried out
to give the time decay of the upper-level population. We
see by this example that the correction due to counter-
rotating wave term is rather small (except the end stage of
decay) even for the largest atomic number Z of hydrogen-
like atom, as conjectured by the usual estimation.

2 The spectra of correlation functions
for spontaneous emission of a two-level atom

The A · P type Ĥint for the spontaneous emission of a
two-level atom is known as

Ĥint(t) = i�
∑
k,j

[
gkjσ̂+(t)âkj(t) − g∗kjσ̂−(t)â†

kj(t)

+ḡkjσ̂+(t)â†
kj(t) − ḡ∗kj σ̂−(t)âkj(t)

]
(1)

with counter-rotating wave terms included, where âkj

(â†
kj) is the photon annihilation (creation) operator of

mode (k, j), σ̂± are atom-level change operators (σ̂+ cor-
responds to upward change and σ̂−downward change), gkj

and ḡkj are coupling constants for rotating-wave term and
counter-rotating wave term respectively,

gkj = − e

m

√
2π�

V kc
εkj · Gk, (2a)

Gk =
∫

eik·xΨ †
2 (x)∇Ψ1(x)d3x,

ḡkj = − e

m

√
2π�

V kc
εkj · Ḡk, (2b)

Ḡk =
∫

e−ik·xΨ †
2 (x)∇Ψ1(x)d3x

in which εkj is the polarization vector of photon
mode (k, j), Ψ2(x) and Ψ1(x) are the upper level and
lower level wave function respectively. They are two-
component spinor functions. It is seen from equation (2)
that when Ψ2(x) and Ψ1(x) have the same parity, Ḡk =
−Gk; when Ψ2(x) and Ψ1(x) have the opposite parity,
Ḡk = Gk; and similar relations for gkj and ḡkj.

The dynamical equations for both atom and photon
operators are readily deduced from Ĥint. Eliminate the op-
erators âkj and â†

kjby taking the electromagnetic (e.m.)

field as reservoir, the resultant differential-integral equa-
tions are given by

d
dt

σ̂−(t) =
∫ t

0

[u1(t − t′) − ū1(t − t′)]σ̂3(t)σ̂−(t′)dt′

+ e2iω0t

∫ t

0

[u2(t − t′) − ū2(t − t′)]σ̂3(t)σ̂+(t′)dt′

− σ̂3(t)
[
Σ̂1(t) + Σ̂†

2(t)
]

(3a)

d
dt

σ̂3(t) = −2
∫ t

0

[u1(t − t′) − ū1(t − t′)]σ̂+(t)σ̂−(t′)dt′

− e2iω0t

∫ t

0

[u2(t − t′) − ū2(t − t′)]σ̂+(t)σ̂+(t′)dt′

+ 2σ̂+(t)
[
Σ̂1(t) + Σ̂†

2(t)
]

+ h.c. (3b)

where σ̂3 is the atom population-difference operator
and Σ̂j(t)’s are fluctuation operators defined in equa-
tion (5). There are totally four correlation functions in
the above differential-integral equations:

u1(t − t′) =
∑
kj

|gkj |2e−i(ω−ω0)(t−t′)

≡
∫ ∞

0

R1(ω)e−i(ω−ω0)(t−t′)dω, (4a)

ū1(t − t′) =
∑
kj

|ḡkj |2ei(ω+ω0)(t−t′)

≡
∫ ∞

0

R1(ω)ei(ω+ω0)(t−t′)dω, (4b)

u2(t − t′) =
∑
kj

gkj ḡkjei(ω−ω0)(t−t′)

≡
∫ ∞

0

R2(ω)ei(ω−ω0)(t−t′)dω, (4c)

ū2(t − t′) =
∑
kj

gkj ḡkje−i(ω+ω0)(t−t′)

≡
∫ ∞

0

R2(ω)e−i(ω+ω0)(t−t′)dω, (4d)

since |gkj|2 = |ḡkj|2. The correlation spectrum R1(ω) is
expressed by

R1(ω) =
V

(2π)3
ω2

c3

∫
dΩk

∑
j

|gkj|2

=
e2

�ω

4π2m2c3

∫
dΩk

[|Gk|2 − |nk ·Gk|2
]
. (4e)

Similar expression for R2(ω) can be written out directly.
The nk in equation (4e) is the unit vector in the direction
of k. We see that there are two spectral functions R1(ω)
and R2(ω), not just only one spectral function as in the
references [1–5].



C.-Q. Cao et al.: Spontaneous emission of an excited two-level atom 281

The two quantum fluctuation forces are expressed by

Σ̂1(t) =
∑
kj

gkjâkj(0)e−i(ω−ω0)t, (5a)

Σ̂†
2(t) =

∑
kj

ḡkjâ
†
kj(0)ei(ω+ω0)t. (5b)

As a first step we calculate the coupling constant Ḡk

and Gk. For simplicity, we omit the spin of the electron.
Substituting the wave function of hydrogen-like atom

Ψ1(x) = f1(r)Yl1m1(θ ϕ), Ψ2(x) = f2(r)Yl2m2(θ ϕ) (6)

and also the expansion formula of plane wave by spherical
waves into equation (2a) and making use of the formula
of ∇Ψ1(x), one gets Gk as in [5]

Gk = (−1)m2

√
4π(2l2 + 1)

2l1 + 1

∑
lmµ

il√
2l + 1

Ylm(θkϕk)

×[−
√

(l1 + 1)(2l1 + 3){Al(ω) − l1Bl(ω)}
×C(l1 + 1, 1, l1; m1 − µ, µ, m1)
×C(l1 + 1, l2, l; m1 − µ,−m2, m)

×C(l1 + 1, l2, l; 0, 0, 0) +
√

l1(2l1 − 1){Al(ω)
+(l1 + 1)Bl(ω)}C(l1 − 1, 1, l1; m1 − µ, µ, m1)
×C(l1 − 1, l2, l; m1 − µ,−m2, m)
×C(l1 − 1, l2, l; 0, 0, 0)]nµ (7)

in which C(l1 + 1, 1, l1; m1 − µ, µ, m1) etc are Clebasch-
Gordan coefficients, nµ(µ = +1, 0,−1) are spherical bases,

n+1 =
1√
2
(n1 + in2),

n0 = n3,

n−1 =
1√
2
(n1 − in2) (8)

and

Al(ω) =
∫ ∞

0

r2jl

(ω

c
r
)

f2(r)
df1(r)

dr
dr, (9a)

Bl(ω) =
∫ ∞

0

rjl

(ω

c
r
)

f2(r)f1(r)dr. (9b)

The summation in equation (7) actually contains only fi-
nite terms because of the angular momentum addition
rule. For the first term in the square brackets, l is re-
stricted in the range |l2 − l1 − 1| ≤ l ≤ l2 + l1 + 1, and for
the second term, in the range |l2− l1 +1| ≤ l ≤ l2 + l1−1.

The Ḡk can be obtained from equation (7) simply by
the substitution

Ylm(θkϕk) → (−1)lYlm(θkϕk). (10)

Substituting Gk and the formula

nk =

√
4π

3

µ=1∑
µ=−1

Y1µ(θkϕk)n∗
µ (11)

into equation (4e) and carrying out the integration over θk

and ϕk, one will obtain the first spectral function R1(ω).
The spectrum R2(ω) can be calculated similarly.

To see explicitly these spectral functions, we con-
sider the same example of hydrogen-like atom studied in
reference [5]: Ψ1(x) and Ψ2(x) carry quantum numbers
(n1 = 1, l1 = 0) and (n2 = 2, l2 = 1, m2 = 1) respectively
with the expression

Ψ1(x) =
1√
4π

N1e−r/a1 , N1 =

√
4
a3
1

, (12)

Ψ2(x) = N2re−r/a2Y11(θ ϕ), N2 =

√
4

3a5
2

· (13)

In this simple case, the gradient of Ψ1(x) may be evaluated
directly. Substituting it into equation (2a) and carrying
out the angular integration, one obtains [5]

Gk =

√
4π

3
N1N2

a1

[
X0(ω)Y00(θkϕk)n−1

+ X2(ω)

(√
6
5
Y2,−2(θkϕk)n+1

−
√

3
5
Y2,−1(θkϕk)n0

+

√
1
5
Y2,0(θkϕk)n−1

)]
(14)

where

X0(ω) =
∫ ∞

0

r3j0

(ω

c
r
)

e−r/adr =
2a4

(
3 − ω2a2

c2

)
(
1 + ω2a2

c2

)3 ,

(15)

X2(ω) =
∫ ∞

0

r3j2

(ω

c
r
)

e−r/adr =
8a4 ω2a2

c2(
1 + ω2a2

c2

)3 (16)

with
1
a

=
1
a1

+
1
a2

· (17)

In this simple example, both Al(ω) and Bl(ω) are propor-
tional to Xl(ω).

In equation (14) the angular momentum l only takes
the value 0 and 2, hence we know from equation (10) that
in this example Ḡk = Gk, consistent with what we say
below equation (2b). This is in turn implies the equality of
the counter-rotating wave coupling constant ḡkj and the
rotating-wave coupling constant gkj. Thus the correlation
spectrum R2(ω) is given by

R2(ω) =
V

(2π)3
ω2

c3

∫
dΩk

∑
j

g2
kj

=
e2

�ω

4π2m2c2

∫
dΩk

[
G2

k − (nk · Gk)2
]
. (18)
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It is easy to show that
∫
dΩkG2

k = 0. By further utilizing
the coupling rule for spherical harmonics, nk · Gk may
be expressed as

∑3
l=1 clYl,−1(θkϕk), hence we also have∫

dΩk(nk ·Gk)2 = 0. Consequently we obtain

R2(ω) = 0. (19)

This may be a quite general result [10].
From equations (4e, 11, 14), one gets the result

for R1(ω) as R(ω) used in reference [5] and also in ref-
erences [3,4]

R1(ω) =
γA

2πω0

ω

(1 + ω2a2/c2)4
, (20)

in which γA is the Einstein A coefficient, given by γA =
4ω3

0|d21|2/3c3
� and in our example the transition dipole

moment d21 takes its absolute value as

|d21| =
64

√
2

81
ea, (21)

with e denoting the magnitude of electron charge.
Actually there is only one parameter in the R1(ω),

since ω0 may be expressed by a as

ω0 =
1
�
(E2 − E1) =

�

6ma2
, (22)

and the two atomic radii a1 and a2 are related to a by
multiplying constants 3/2 and 3 respectively. Since a is
proportional to the atomic number 1/Z, we see from equa-
tion (22) that ω0 is proportional to Z2.

The relation between γA/ω0and a is obtained from
equations (21, 22), and may be expressed by

γA

ω0
=

8
3

(
32
243

)2(
e2

�c

)3
a2

B

a2
, (23a)

where aB is the Bohr radius. The dependence of γA/ω0

on the atomic number Z is given by

γA

ω0
=

1
6

(
64
81

)2(
e2

�c

)3

Z2, (23b)

hence the value γA/ω0 = 10−3 corresponds to Z = 157,
somewhat larger than the upper limit of the real nuclei.

A profile of R1(ω) is shown in Figure 1 of reference [5],
in which the dimensionless parameter γA/ω0 (instead of a)
in R(ω) is taken as 0.001.

In case the atom is taken as a pointlike particle, the
factor eik·x in the integrand of Gk is omitted, Gk is then
independent of k. Hence, R1(ω) will become linear in ω
as can be seen from equation (4e), and the coefficient
is just γA/2πω0. We will call this spectrum as pointlike
dipole spectrum:

RD
1 (ω) =

γA

2πω0
ω . (24)

It also corresponds to R1(ω) with ωa/c = 0 in the denom-
inator.

Actually in our example only electric dipole emission is
allowed by the selection rule of angular momentum, thus
the factor (1+ω0a/c)−4 in R1(ω) just expresses the finite
size effect on the radiative electric dipole transition.

In this example, both u2(t − t′) and ū2(t − t′) are
equal to zero, only two correlation functions u1(t− t′) and
ū1(t − t′) remain. The former comes from the rotating-
wave interaction and the latter from the counter-rotating
wave interaction. In case we make the Markovian approx-
imation on them, namely approximate them by Cδ(t− t′)
and C̄δ(t − t′) respectively to neglect the memory effect,
the constants C and C̄ will be determined by integration
of equations (4a, 4b) respect to t from t′ to ∞ (note that
u1 and ū1 are defined only in the region t > t′). The results
so obtained is

1
2
C = πR1(ω0) − i

∫ ∞

0

℘
R1(ω)
ω − ω0

dω , (25a)

1
2
C̄ = i

∫ ∞

0

R1(ω)
ω + ω0

dω , (25b)

where ℘ denotes taking the principal value. The imaginary
parts of C nd C̄ contribute just an level-shift which will
be canceled out in equation (3b) because of the h.c. term.

Taking the expectation value of equation (3b) and not-
ing the upper level population 〈N̂2(t)〉 = (1 + 〈σ̂3(t)〉)/2,
one gets immediately

d
dt

〈
N̂2(t)

〉
= γ

〈
N̂2(t)

〉
(26a)

with

γ = 2πR1(ω0) =
γA

(1 + ω2
0a

2/c2)4
· (26b)

We see that γ is different from γA by the finite size cor-
rection factor (1 + ω2

0a
2/c2)−4, which in our example is

about 0.729.
We would like to point out that the counter-rotating

wave interaction will have no effect on d
dt 〈N̂(t)〉 in the case

Markovian approximation is made, even if R2(ω) 
= 0.
In the next section we will study the non-Markovian

approach with the counter-rotating term included.

3 Quantum stochastic trajectory approach
to the spontaneous emission

We have shown by equation (20) that the two-level
atom with large atomic number Z has an evident non-
Markovian reservoir in its spontaneous emission. Hence
we will, as described in references [7,8], introduce N
additional fictitious harmonic oscillators, which interact
with the atom in the same form as photons, to form
an expanded system. This expanded system thus has the
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Hamiltonian

Ĥ =
1
2

�ω0σ̂3 +
N∑

j=1

�ωjα̂
†
jα̂j + i�

N∑
j=1

(
gjσ̂+α̂j

− g∗j σ̂−α̂j
† + ḡj σ̂+α̂j

† − ḡ∗j σ̂−α̂j

)
(27)

in which the energies of the two atom-levels are taken
as ± 1

2�ω0 respectively, α̂j and α̂†
j are annihilation and

creation operators of the jth oscillator, ḡj = ±gj for the
relative parity of Ψ2 and Ψ1 equal to ∓1 respectively. Each
of these oscillators, on the other hand, is assumed to in-
teract with its own reservoir with no memory, hence the
expanded system is Markovian. In terms of Langevin equa-
tions in Heisenberg picture the dynamics of the above sys-
tem is expressed by

d
dt

σ̂−(t) = −iω0σ̂−(t) −
N∑

j=1

[
gjα̂j(t)

+ ḡjα̂
†
j(t)
]
σ̂3(t), (28a)

d
dt

σ̂3(t) = 2
N∑

j=1

[
gjα̂j(t) + ḡjα̂

†
j(t)
]
σ̂+(t)

+ 2
N∑

j=1

[
g∗j α̂j

†(t) + ḡ∗j α̂j(t)
]
σ̂−(t), (28b)

d
dt

α̂j(t) = −iωjα̂j(t) − g∗j σ̂−(t) + ḡj σ̂+(t)

−1
2
Γj α̂j(t) − F̂j(t) (28c)

with 〈
F̂j(t)

〉
R

= 0,
〈
F̂i(t)F̂j(t′)

〉
R

= 0,〈
F̂i(t)F̂

†
j (t′)

〉
R

= δijΓjδ(t − t′). (28d)

The last two terms of equation (28c) are the usual
Markovian dissipation term and fluctuation term con-
tributed by the reservoir of jth oscillator.

When the formal solution of equation (28c) is used to
eliminate the variables α̂j and α̂†

j in equations (28a, 28b),
the reduced equation for σ̂+(t) and σ̂3(t) will have non-
Markovian damping terms and non-Markovian fluctuation
terms, since each fictitious oscillator contributes a term
with Lorentzian type spectrum. The next step is to se-
lect parameters gj , ḡj , ωj and Γj to simulate the origi-
nal damping terms and fluctuation terms. Now there are
two spectral functions, not just one spectral function as
in rotating-wave approximation, the simulation task will
become more complicate.

As soon as the simulation task is accomplished, one
may go back to the master-equation formulation and treat
it by quantum stochastic trajectory approach. The non-
Hermitian Hamiltonian is now taken as

Ĥnh = Ĥ − i
2

�

∑
j

Γj α̂
†
jα̂j , (29)

where Ĥ is expressed by equation (27). The collapse op-
erators acting on |Ψ(t)〉 are

Ĉj =
√

Γj∆tα̂j , j = 1, 2, ..., N. (30)

To proceed with concrete analysis and compare with the
result of rotating-wave approximation, we return to the
example with Ψ2(x) and Ψ1(x) described by equation (12).

In reference [5] only two fictitious oscillators are in-
troduced to simulate the spectrum R(ω) ≡ R1(ω) of this
example, the corresponding simulation spectrum R(s)(ω)
fits pretty well with R(ω) in a large region ω/ω0 ≥ 0.5,
which includes the important region around ω/ω0 = 1.
But the R(s)(ω) drops down less slowly than R(ω) when
ω/ω0 → 0. At the origin, R(s)(ω)/R(s)(ω0) is still about
0.36 while R(ω) drops to zero (see Fig. 1 of Ref. [5]).

Now there is an additional spectrum R2(ω), we have
to use one set of N oscillators to simulate both of them,
namely to make

R1(ω) ∼= R
(s)
1 (ω) ≡ 1

2π

N∑
j=1

|gj |2Γj

(ω − ωj)2 + 1
4Γ 2

j

, (31a)

R2(ω) ∼= R
(s)
2 (ω) ≡ 1

2π

N∑
j=1

gj ḡjΓj

(ω − ωj)2 + 1
4Γ 2

j

· (31b)

In general, the simulation is not easy to be carried out. But
in the case R2(ω) = 0, we may simply take four fictitious
oscillators with following parameters:

g1 =
1√
2
0.011ω0, Γ1 = 1.3ω0, ω1 = ω0, (32a)

g2 =
1√
2
0.018ω0, Γ2 = 2.4ω0, ω1 = 1.85ω0, (32b)

g3 =
i√
2
0.011ω0, Γ3 = 1.3ω0, ω3 = ω0, (32c)

g4 =
i√
2
0.018ω0, Γ4 = 2.4ω0, ω4 = 1.85ω0. (32d)

It is easy to check that the above set of parameters
makes R

(s)
2 (ω) = 0 no matter the relative parity be-

tween Ψ2 and Ψ1 is positive or negative, while R
(s)
1 (ω)

remains unchanged from the R(s)(ω) of reference [5].
Since the numerical evolution takes place over discrete

times with a small time step ∆t, the wave function |Ψ(t)〉
is represented by a sequence |Ψ(tn)〉 with tn = n∆t. Given
the value of |Ψ(tn)〉, the next one |Ψ(tn+1)〉 is determined
by the following algorithm:

(1) evaluate the four kinds of collapse probabilities during
interval (tn, tn−1):

Pj(tn) =
〈
Ψ(tn)

∣∣∣Ĉ†
j Ĉj

∣∣∣Ψ(tn)
〉

= Γj

〈
Ψ(tn)

∣∣∣α̂†
jα̂j

∣∣∣Ψ(tn)
〉

∆t, j = 1, 2, 3, 4

(33)

in which ∆t should be small enough to make P1(tn)
and P2(tn) much small than 1;
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Fig. 1. The spontaneous decay of the upper level population
with parameters (γA/ω0 = 1×10−3). The curve I represents the
result without both rotating-wave and Markovian approxima-
tion, the curve II represents the result with rotating-wave ap-
proximation but without Markov approximation as calculated
in reference [5], the curve III represents the Weisskopf-Wigner
result.

(2) generate four random numbers rj (j = 1, 2, 3, 4) which
have uniform probability distribution among the in-
terval (0, 1);

(3) compare Pj(tn) with rj and derive |Ψ(tn+1)〉 accord-
ing to the following rule: if Pj(tn) < rj and for all j,

|Ψ(tn+1)〉 =
e−

i
�

Ĥnh∆t|Ψ(tn)〉√
〈Ψ(tn)|e i

�
(Ĥ†

nh−Ĥnh)∆t|Ψ(tn)〉
; (34)

if Pl(tn) > rl for some one index l and all other
Pm(tn) ≤ rm,

|Ψ(tn+1)〉 =
Ĉl|Ψ(tn)〉√

〈Ψ(tn)|Ĉ†
l Ĉl|Ψ(tn)〉

· (35)

In the practical calculation, ∆t should be taken suffi-
ciently small so that the case with any two (or more)
Pj(tn)’s larger than the corresponding rj in the same
interval (tn, tn + ∆t) will not happen.

By carrying out the steps specified above over and over

from the initial state
(

1
0

)
|0, 0, 0, 0〉 where

(
1
0

)
is the atom

state in the upper level and |0, 0, 0, 0〉 denotes the state of
four oscillators with their number of quanta all being zero,
we get a quantum stochastic trajectory of the Monte Carlo
wave function |Ψ(t)〉. The expectation value of a given
operator respect to |Ψ(t)〉 is then calculated. Finally an
ensemble average of 400 trajectories is carried out to give
the resultant curve.

The population on the upper level 〈N̂2(t)〉 is shown in
Figure 1. We see that the correction of counter-rotating
wave term to the non-Markovian result obtained in refer-
ence [5] is quite small even Z is as large as 157. Hence one

may neglect this term for stable nuclei without introduc-
ing obvious error.

We note that the large difference between curve II and
curve III comes from two respects as mentioned in Sec-
tion 1: the first one concerns the finite size correction,
corresponding to the replacement of γA by γ with γ =
0.729 γA. This correction is calculated analytically and
should be reliable. The second correction is the memory
effect corresponding to the non-uniform of R(ω), namely
the difference of R(ω) from R(ω0). This part is evaluated
numerically and has some errors from simulation and from
the pseudo character of the random numbers generated
by program. Both corrections make the decay slower. As
shown in reference [5], the first correction is much larger
than the second. As to the difference between curves I
and II which comes from the effect of counter-rotating
wave coupling, it is totally due to the non-Markovian con-
tribution since in the present case R2(ω) = 0, γ remains
unchanged as specified in the end of Section 2.
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